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I. INTRODUCTION

One of the goals in atomistic computer simulations is to enlarge both the time and
length scale of simulations without compromising accuracy. Due to the high computa-
tional cost of ab initio techniques, empirical interaction models are adopted in the study
of chemical and physical problems of large-scale systems. However, the widely accepted
pairwise additivity approximation leads to computationally efficient algorithms at the
price of transferability. For this reason the formulation of new methodologies aimed at
combining the advantages of both ab initio and empirical techniques is a very active
area of research. [1-13]

We recently proposed a molecular dynamics (MD) implementation of an ab initio
parameterized polarizable force field (PFF). [14] In this method, which may be con-
sidered an extension of the Chemical Potential Equalization scheme, [15-18] the total
density of the system was defined as the sum of a reference p° and a response density
0p. The formulation was derived from a second-order expansion of the energy func-
tional in terms of dp and the change in the external potential, dv. Polarization effects
were described via a density functional theory (DFT) derived treatment of the response
density and the corresponding fictitious dynamical variables propagated in time using
an extended Lagrangian formalism. [19] This method proved to be stable and compu-
tationally efficient. [14] A single parameterization of the model provided a satisfactory
description of different physical phases of Lil, a system with known polarization effects.
A limitation of the model is that the non-electrostatic energy contributions due to p°
are described by a pairwise Born-Mayer like term. The parameterization of this pair-
potential was performed by a least squares fit to ionic forces collected from ab initio
MD simulations. [19] Due to the extensive configuration sampling required by such
a “force matching” procedure, application of the PFF model to chemically complex
systems is not straightforward. [20]

Here we present a related approach, based on a linear response formulation of polar-
ization effects, that avoids the use of pair potentials while keeping the computational
cost at a minimum. This improved methodology treats the total unperturbed elec-
tronic reference density p° in a frozen electron gas framework. In analogy with the

Kim—Gordon theory, [21, 22] the energy of p° (defined as the superposition of frozen



reference densities of subsystems) is calculated via the density functional theory of the
inhomogeneous electron gas. Thus, no pairwise additivity of the forces among subsys-
tems is assumed, and no force-matching procedure on the specific system under study
is needed.

Frozen-density based schemes have a long history. In the original Kim—Gordon (KG)
model [21] potential energy surfaces of interacting closed-shell fragments were calcu-
lated with a non-variational approach. Simple additivity of individual electronic densi-
ties was assumed, ¢.e. no rearrangement of the subsystem charge distribution with re-
spect to the vacuum density takes place upon interaction with other subsystems. Frozen
densities were obtained from Hartree-Fock calculations, and both the kinetic (KE) and
exchange-correlation (XC) energy terms were treated by local density approximations.
The KG theory could not describe the rearrangement of electronic density character-
izing the formation of chemical bonds between open-shell systems, but it proved to
be accurate when applied to noble gas atoms. However, further studies showed that
the good performance of the KG model was in fact due to a cancellation of errors
between the KE and XC contributions. [23] The construction of more accurate energy
functionals stimulated the formulation of new computational schemes exploiting and
extending the original idea of KG. [24-39] Specifically, Wesolowski and co-workers pro-
posed a hybrid Kohn-Sham electron gas approach, based on a self-consistent treatment
of “freezing” and “thawing” the electronic density of properly chosen fragments. [32—
37] Such a Kohn-Sham constrained electron density (KSCED) formalism is based on
the variational principle, thus avoiding the limitation of frozen subsystem densities.

Barker and Sprik have recently presented a molecular dynamics implementation of
the electron gas model applied to liquid water and were able to satisfactorily repro-
duce experimental structural data. [39] At difference with the original KG theory, the
subsystem frozen charge distributions were no longer taken from isolated molecules
but adapted to the condensed phase environment. In particular, the model density
of water molecules was adjusted to match the average HyO dipole moment in liquid
water. [40] Moreover, assuming that only valence electrons significantly contribute to
interactions among closed shell molecules, all-electron densities have been replaced by

smoother frozen pseudodensities which match the true charge distribution only in the



valence region. In order to ensure the correct charge balance, the full ionic charges were
replaced by point nuclear pseudocharges. Removal of the core electronic distributions,
characterized by a steep radial dependence, facilitates computational efficiency.

The methodology presented here is a compromise between the KSCED and the
pure frozen density molecular dynamics schemes. In analogy with the Barker-Sprik
approach, we have defined p° as the valence electronic charge distribution of a reference
system. [39] Optimal pseudized valence densities of subsystems are obtained from KS-
DFT calculations and kept frozen along the simulations. Interaction with the core is
described by a novel type of local atomic pseudopotentials. All the modifications of
the charge distribution due to polarization are accounted for by a response density dp,
modeled as a superposition of subsystem response basis functions. [14] Density response
coefficients depend on the instantaneous ionic configuration and are allowed to vary
in response to changes in the chemical environment. The method has been tested
by performing extensive simulations on a series of alkali halides in different physical
phases and comparing the calculated properties with both experimental data and ab
initio calculations. The implementation of the method is available through the open

source project CP2K. [41]

II. METHOD
A. Energy

The system under consideration is built from a set of N interacting subsystems
(atoms, molecules or closed-shell ions), and their electronic charge distribution p(r) is

defined as the sum of a frozen contribution p° and a response density dp:

p(r) = p°(x) +6p(r) = > (0%(x) +bpalr)) - (1)

A

Additivity of both reference and response densities is assumed i.e. the total density
is the superposition of individual subsystem densities. The p%’s are optimum frozen
pseudodensities modeling after the valence charge distribution of each individual sub-

system. Thus, in the present formulation p°(r) represents the total valence density of



the reference system. We start from the energy functional of the system:

Elp.v) = Flol+ [ plovix)ds + Vi @)

where Fp] is a functional of the density, Vyx the nuclear-nuclear interaction energy
and v(r) an external potential. Under the assumptions that no external field is present
and that p° is the valence electronic reference density, only the ionic pseudocharges and
the core electrons contribute to v(r). Expanding this functional up to second order in

dp and Jv, the following expression is obtained (Equation 16 of Ref. [14]):

E[p°,6p] = Fsr[p’] + /P(r)l/(r)dr + Wan + E // %drdr'

e i [ [0 (i) i 0

The basic equations of the present model can be derived starting from this expression

and the charge conservation, namely

/ Sp(r)dr = 0 . )

As in Ref. [14], the response density is obtained from linear response-DFT calcula-
tions, [42-45] on an isolated subsystem and expanded in a finite basis set of atom-

centered functions

dpa(r Zcz (5)

[ otwir=o. (6)

Expression (3) reduces to the Kim-Gordon model (with pseudized densities) when the

with the property

density response is set to zero (6p = 0). The p%’s are linear combinations of localized
functions reproducing the Kohn-Sham valence electronic density of the individual sub-
system. Cartesian Gaussian functions have been chosen as basis functions for both the
frozen and the response density. Fgsg is the sum of a kinetic energy functional (e.g.

Thomas-Fermi) Trp and an exchange-correlation functional Fxc

Fse[p] = Trelp] + Exclp] - (7)



In the following we will assume that Fsg is a local functional of the density. Equa-

tion (3) can be rearranged to

E[p°,6p] = Fsr[p"] + /P(r) Vgr(r) dr — Egar + Eovlp

/ / " drdr + FQI+ FRl . (®)

where the total charge density p!(r) is defined by

p'(x) = p°(x) + p°(x) + dp(r) 9)

and the short-hand notations

FRU = [ Pl dote) de = / (aFSR)p oote) ar
Flo) = 5 [ R sote) a5 [oote) (572) e (0

have been introduced. Using a normalized Gaussian core charge distribution with

width o for the calculation of the Coulomb term results in

e\ 1/2
(0]
Bt = Y2 (g) (11)

A
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Here erfc denotes the complementary error function. Finally, vgy (r) is the short-range
part of the external potential after the subtraction of the Coulomb potential associated
with the Gaussian core charges.

The total energy of the system is calculated solving Equation (8) for dp(r). We
replace dp(r) with its finite basis set expression to obtain the energy as a function of the
expansion coefficients {¢; }. Minimization with respect to the {¢;} provides the optimal
coefficients that determine the density response due to the interacting subsystems, and
thus the polarization effects in the system. The coefficients {c¢;} are then propagated in
time using an extended Lagrangian scheme. The molecular dynamics implementation
closely follows the procedure reported in Ref. [14]. A Nosé-Hoover thermostat is applied

to the coefficients in order to avoid energy transfer between ionic and fictitious degrees



of freedom. [46, 47] Thus, our new formulation leads to a polarizable model which fully
avoids the pair-potential approximation and where all parameters are derived from

DFT or LR-DFT calculations on the individual subsystems.

B. Forces

A molecular dynamics implementation of the pseudized Kim—-Gordon response den-
sity (PKGRD) model requires the calculation of forces on both ions and coefficients at

each time step. The forces on the density response coefficients are given by

OE
aci N
where Voou(r) is the Coulomb potential of the total charge distribution p’(r). As both

- / dr (Vou(r) + vE5(r) + Fl + Fli) éi(x) | (13)

frozen and response densities are defined as linear combinations of atomic position
dependent localized functions, the forces on particles will have Pulay contributions.
Moreover, derivation of FS%) [p] leads to a term depending on the third derivative of the
kernel, namely
0°Fsr 2
Fgh = (7 op(r . 14
%= (apay) _, 00 (1)

The resulting formula for the ionic gradients is quite involved.

(%) B _aaEfO{vIlp + 6iRI ( / (p(r) + 5p(r))yg;(r)dr>

Op°(r 1 apo r
- / Veou(r) (aT(I)) dr -+ / (unl(r)+Fs'R+Fs';{+§Fs'g{) ( af?) dr

[ (ante) + B+ P (582 Ve . (19

In Eq. 15, the first two terms are calculated analytically in real space, whereas the
remaining terms are evaluated numerically on discrete grids. The expression for the
ionic forces in a reduced pseudo-Kim—Gordon model (i.e. no response density) can be

easily derived from (15) by setting dp to zero.

C. Pseudo and response densities

In analogy with other frozen density schemes, [21, 39] optimal pseudodensities should

be obtained a priori from an orbital-based calculation and provided as input for the



PKGRD simulations. Moreover, the explicit treatment of the density response requires
a set of subsystem-centered basis functions. These response functions ¢:!(r) are calcu-
lated via linear-response KS-DF'T in a plane wave basis and then projected on a small

basis set of smooth primitive Cartesian Gaussians x,:
6 (r) =) buixu(r). (16)
]

where b, are the contraction coefficients. Basis functions of both s- and p-type have
been used in order to allow for description of dipole perturbations (see Ref. [14] for
details). A similar procedure has been adopted for the subsystem frozen electronic
pseudodensity, p%(r). Due to the use of pseudopotentials in the plane wave DFT code,
subsystem densities are already pseudized, exhibiting a smooth radial dependence.

What remains is to project the density onto a set of Cartesian Gaussian functions
nA CMg 3/2
2
A0 =3 (D) ew[-ad - Rl (17
g=1

The parameters of p° in equation (17) (i.e. exponents and coefficients) have been
determined by a charge-constrained fit to the KS pseudo density using a simplex min-
imization algorithm. [48] Very accurate fits were obtained using a set of 5(6) s-type
Cartesian Gaussians. As the method has been applied to alkali halides of type MX, M*
and X~ have been chosen as reference subsystems. Care has been taken to verify that
the calculations on negatively charged species produce bound states. [14] However, at
difference with Ref. [14], the anionic isolated subsystem was embedded in an external
parabolic confining potential in order to mimic a condensed phase environment when

obtaining the pseudodensities and response basis functions.

D. Local Pseudopotentials

Assuming that the contribution of core electrons to intermolecular interactions is
negligible, we have defined p%(r) as the frozen electronic pseudized valence density of
subsystem A. Accordingly, Z4 represents its pseudo nuclear charge, when combined
with pY%(r) yields the correct net charge of the subsystem. The absence of explicit

core electrons leads to the problem of defining appropriate pseudopotentials (PP) for



the model. In contrast with all-electron schemes, where core electrons are explicitly
treated and v(r) is therefore simply the Coulomb potential associated to the nuclear
charge, the external potential should effectively incorporate the interactions with the
core electrons. The inclusion of such contribution is crucial for achieving a physically
consistent description of the system. Atomic PP adopted in standard KS-DFT are
intrinsically non-local and cannot be used in the context of a density-based approach.
The same problem is also faced in orbital-free schemes, where it has been circumvented
using empirical local PP [49, 50] or requiring that the local PP should reproduce the
Kohn-Sham energy and electron density of a reference bulk state. [51, 52] However,
such potentials are generally designed for bulk metallic systems. We have therefore
implemented a novel procedure to obtain local atomic PP that approximate the prop-
erties of standard non-local PP. The same idea has already been exploited by Troullier
and Martins to generate a fully local PP for silicon. [53] The potential parameters min-
imize the difference between the all-electron and pseudo eigenvalues and charges of all
valence electronic states simultaneously. Our prescription follows the Goedecker-Teter-
Hutter (GTH) approach for constructing non-local PP. [54, 55] The analytic form of
the local part of GTH PP is optimal for calculations with Gaussian basis sets. We use

the following generalized form

v(r) = _TZerf(\/a_or)

+ Z exp(—a;r°)(C1 + 2 Coair® + 4 Csair* + 8 Cuair®)  (18)
i—0,N—1

Experience has shown that the use of a small set of o’s (typically 3-4) considerably
improves the quality of local PP with respect to the standard form with a single
exponent. The energy contribution of vgy can be calculated analytically using Obara-
Saika recursion relations for Gaussian overlap integrals. [56]

Not surprisingly, these local pseudopotentials are less accurate than the standard
non-local GTH PP. Whereas GTH potentials typically reproduce the eigenvalues and
charges of the occupied states to within 107® a.u. [54] local PP show discrepancies
of 1073 a.u. A similar level of accuracy had also been achieved for the local PP
of silicon. [53] The validity of the local potentials in the framework of the present
methodology has been thoroughly tested by performing PKGRD calculations on both
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gas phase molecules and condensed phase systems.

III. RESULTS AND DISCUSSION

Owing to their relatively simple chemistry and to the large amount of experimental
data available in literature, alkali halides have often been chosen as benchmarks for
validating new computational techniques. Following this practice, we applied the PFF
method to lithium iodide. [14] The presence of Lit and a highly polarizable anion
makes this system an ideal candidate for testing the reliability of a polarizable model.
We will profit from our experience and apply the new PKGRD technique to the same
Lil model system as well as others of the MX series. Comparison with the results of
Ref. [14] as well as with KS-DFT calculations and experimental data enables us to gain
detailed information about the performance of the present approach.

All parameters in the PKGRD equations are obtained from calculations on the
individual subsystems. This suggests that the PKGRD method should be less sensitive
to transferability problems compared to standard pairwise empirical potentials. We
investigate this issue by performing calculations on LiCl using the same Li™ parameters
adopted for the Lil system. Moreover, in order to better assess limitations of the model,
the relative stability of the B1 and B2 crystal structures of CsCl will be calculated
employing the Cl~ parameter set used for LiCl.

Thus, the isolated cation and anion were chosen as reference subsystems for this case
study. The pseudo valence density of the anions integrates to -8 and the corresponding
pseudo nuclear charge is 7. Due to the choice of reference subsystems, the pseudo
valence density of alkali cations should be identically zero. However, in the case of Li*,
we have adopted the original GTH semicore PP, which is local. Therefore, the pseudo
valence density of Li™ integrates to -2 and Zp; = 3.

The robustness of the method and the quality of our parameterization of the frozen
densities, response basis functions, and PP has been tested by modeling different physi-
cal phases of the aforementioned systems, namely the MX gas phase dimers, the liquid
phase and the solid phase in both the Bl and B2 crystal structures. The average

structural properties of the condensed phases have been investigated by inspecting the
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pair correlation functions obtained from MD simulations. Thermodynamic properties
of the solid phases (lattice energies, equilibrium cell parameters and bulk moduli) have
been calculated and the relative stability of the B1/B2 crystal structures examined.
For the gas phase dimers, potential energy curves have been obtained.

All calculations described in this work were performed with local density functionals,
i.e. the Pade approximation for XC [54] and the Thomas-Fermi functional for KE.

For each test case KS-DFT calculations were performed as an unbiased reference.
The ab initio calculations have been performed with the plane wave/pseudopotential
code CPMD. [57] In these calculations GTH pseudopotentials (semicore in the case of
Li) and an energy cutoff of 60 Ry were employed. Car-Parrinello simulations of the
condensed phases have been run on relatively small systems of 32 formula units with
periodic boundary conditions for 5 ps. Equations of motion were integrated using a
time step of 7.5 au and a fictitious mass of 1000 au. The size of the cubic simulation cell
has been determined using the experimental values of the cell parameter for the solid
and density for the liquid. The calculations on the gas phase dimers were performed

on a large cubic supercell (a = 15 A) in order to minimize image interactions.

A. The LiI system

A series of iodine local PP were constructed and tested to estimate the number of
parameters required to obtain reliable results. In general, 3 to 4 a’s and a total number
of parameters ranging from 6 to 12 lead to accurate and transferable PP for PKGRD
calculations. However, there is no single set of optimal PP parameters; rather, different
parameterizations of the potential may lead to results of comparable quality.

The semicore description of Li enforces the use of Gaussians with large exponents,
whereas the I~ pseudodensity can be expanded utilizing a set of smoother functions.
KS-DFT calculations were performed on both the free and the “embedded” 1~ anion.
In the latter case, an additional confining potential of radius 5.25 a.u. was employed.
The chosen value is of the order of the Li-I separation in the B1 crystal phase.

A basis of s and p-type response functions for I~ and s functions for Lit were used.

The Lit ¢ 4(r)’s and the p-type functions of I~ without confining potentials, are the ones
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adopted in the PFF scheme, [14] whereas the s-type I~ function has been parameterized
using smoother Gaussians. In the case of “embedded” 17, test calculations have shown
that p-type functions alone can well describe density response effects. The parameters
of the subsystems PPs, frozen pseudodensities and response basis functions (i.e. basis
set exponents and coefficients) adopted without any modifications are collected in Tables
I, IT and III respectively.

Tests on gas phase molecules help in assessing the accuracy and transferability of the
PKGRD approach. Potential energy curves have been obtained for the Lil dimer for a
series of interatomic distances. Both the “bare” (set A) and the “embedded” (set B)
parameters for I~ have been tested with both the PKGRD and KG-like methods. These
energy curves are plotted together with the reference KS-DFT calculation in Fig. 1.
All curves compare reasonably well to the KS-DF'T reference, a rather surprising result
for frozen density methods. These results also provide evidence of the transferability
of the local PP. In fact, the PP was constructed for the neutral iodine atom and
can rather successfully reproduce the potential energy surface of a system with the
negatively charged species present. Looking in more detail, it can be seen that with
the simple KG method and the “bare” iodine parameters, the KS-DFT minimum
energy distance (r,in=2.38 A) is correctly predicted and the depth of the minimum
is about 0.02 a.u. less than the KS-DFT reference. Better agreement with the value
of the binding energy at the equilibrium distance is obtained with PKGRD and using
the “embedded” I~ parameterization. However, these curves are softer than the KS-
DFT reference curve at short distances and slightly underestimate the equilibrium
Li-I separation. For interatomic distances larger than r,,;,, all models predict binding
energies less negative than the reference KS-DFT energy curve. This feature is common
in frozen-density, non-variational calculations and can be attributed to the fact that
these approaches cannot account for net changes in the subsystem charge distributions
upon modifications of the chemical environment. [32, 39] The inclusion of polarization
effects through response densities partially circumvents this limitation. Overall, the
level of agreement is about the same as that obtained by PFF calculations [14] with
the advantage that no readjustment of parameters is needed in passing from the gas

phase molecule to the condensed phase systems.
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We now turn to the results of the KG/PKGRD simulations on the liquid and the
solid phases. In both cases, MD simulations have been performed on the same model
systems as used for the KS-DFT reference simulations. Equations of motions were
integrated using timesteps of 1.0 and 0.6 fs for KG and PKGRD runs, respectively.
After equilibration, each simulation was run for ~ 30 ps to obtain adequate statistics
for the structural properties. Due to the presence of the semicore Li density, a cutoff
of 120 Ry had to be used.

Liquid phase simulations were performed in the NVT ensemble, T=800 K utilizing
Nosé-Hoover chain thermostats, in a periodic box of size L=13.5 A. [58] Fictitious
degrees of freedom were thermostatted at a temperature of 2 K. The radial distribution
functions (RDF) calculated from the four trajectories and the KS-DFT reference are
reported in Fig. 2.

All models predict Li-Li pair correlation functions more structured than the KS-DFT
reference. This is expected and we interpret the broadening at short Li-Li distances in
the KS-DFT RDF as due to multi-center bonds with charge-transfer from I~ to Li*,
thus allowing the cations to approach each other at distances significantly shorter than
the first peak position. [14] The representation of such charge-transfer interaction is
beyond the scope of the present frozen-density computational scheme.

We observe that the inclusion of polarization effects improves the Li-Li RDF with
respect to the bare frozen density scheme. All models underestimate the position
of the first peak in I-I RDF by about 0.2 A. However, with the exception of the
KG-like scheme with the “bare” I~ set, the shape and height of the peak are rather
well reproduced by the simulations. The Li-I RDF compare more favorably, even
though the height of the first peak is slightly overestimated. Quite surprisingly, the
simulation performed without polarization correction and with the I7(A) parameter
set, correctly predicts the first peak position (2.65 A). In the previous study on Lil a
slightly better representation of the unlike-ions RDF was achieved. [14] However, recall
that the parameterization of the RDF was based on a KS-DFT simulation on the Lil
melt, whereas in the present simulation no direct information about the liquid phase
system is contained in the parameter set.

The results of the KG/PKGRD simulations on the solid phase system were obtained
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at 300 K (L=12.02 A [58]). Once again information on structural data is gained by
comparing RDFs. Fig. 3 shows that both parameterizations reproduce the KG-DFT
MD results rather well. In particular, the PKGRD I-I and Li-I RDFs lie on top of the
KS-DFT reference; only the height of the Li-Li RDF peak is slightly overestimated.
As expected, the pseudo-KG model with the I7(A) parameters exhibits the largest
differences. However, the use of the simple KG model in conjunction with the I~ (B)
parameters still leads to a satisfactory agreement. Generally we see that the use of
response functions as a tool to model polarization effects improves the structural de-
scription of the solid Lil phase. In addition, the accuracy level achieved by PKGRD in
reproducing KS-DFT MD is in this case significantly better than PFF. [14] Remarkably,
the PKGRD results obtained using the two sets of I~ parameters are very similar to
each other indicating that the subsystem parameterization procedure is flexible enough
to allow for different choices of frozen densities, response functions, and PP, all leading
to good overall representations of the investigated system. This could suggest that in
the case of more complex systems, the construction of a proper parameter set should
not be too difficult.

The data discussed so far represent indeed a strong indication in favor of the ability
of the present model to reproduce KS-DFT results when polarization effects (without
charge transfer) play a dominant role. Comparison of representative thermodynamic
properties with experimental and other ab initio data may be of further help in assessing
its reliability in a wider context.

The procedures for calculating thermodynamic properties were reported in Ref. [14].
For better accuracy, larger simulation systems composed of 108 and 125 formula units
were used for the B1 and B2 phases respectively. The calculated properties are collected
in Table IV. In general, the comparison of the PKGRD thermodynamic quantities with
both the experimental and KS-DFT values is very satisfactory. We now discuss the data
in Table IV in more detail. First of all, both I~ parameterizations correctly predict that
Lil crystallizes in the B1 (i.e. NaCl) structure. Such a result had been also achieved
by the PFF model, however with a value of the cell parameter significantly larger
(12%) than in experiment. [14] From the stability curve of the Bl crystal structure

the equilibrium lattice constant, the lattice energy, and the bulk moduli have been
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calculated. With the present model errors on cell parameters and lattice energies are
of the order of 2-5%, i.e. of a quality comparable to KS-DFT calculations. Errors
on the bulk moduli are larger, suggesting that the approximation of frozen valence
pseudodensities may be inappropriate for an adequate description of the system under
compression, .e. the distortions of the electronic density may be too large to be treated
by a linear-response theory. However, the value of the bulk moduli improves using the
parameter set corresponding to the “embedded” I. This should not be surprising, as
the frozen valence density calculated for the “bare” anion is probably too diffuse to

successfully reproduce the behavior of the crystal under pressure.

B. LiCl and CsCl

The LiCl and CsCl alkali halides have been the subject of a large number of stud-
ies performed with a wide variety of techniques, ranging from simple empirical force
fields to fully ab initio calculations. [59-67] A thorough comparison of our results with
previous work in this area would be a difficult and lengthy task, and is beyond the
scope of the present paper. Thus, the discussion will be focused on establishing how
closely our methodology can approximate KS-DFT results on the condensed phases
and whether a reasonably good agreement with a subset of experimental thermody-
namic properties can be achieved. In this series of applications, our main goal is to
assess the transferability of the subsystem parameter sets.

Frozen pseudodensities and basis functions for density response were determined by
DFT and LR-DF'T calculations on Cl~, using a confining potential of radius 4.75 a.u.
The potential energy curves calculated for the gas phase LiCl systems are reported in
Fig. 4. Both the KG and PKGRD curves are softer than the KS-DFT reference at
short distances. In both cases, the interatomic distance corresponding to the energy
minimum is slightly underestimated (by ~ 0.1 A). With the employed subsystem pa-
rameters, the binding energy at the equilibrium separation calculated with the frozen
pseudodensity scheme agrees well with the KS-DFT value, whereas PKGRD overem-
phasizes the energy depth by about 0.01 a.u. Therefore, a simple KG-like scheme is
able to reproduce the KS-DFT potential energy curve of this gas phase molecule better
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than PKGRD scheme.

The simulation temperature (920 K) and the size of the MD supercell (11.50 A)
for the liquid phase were the same as adopted in the corresponding reference KS-DFT
simulation. As in the case of liquid Lil, the comparison of the calculated RDFs with
the corresponding reference (Figure 5) shows the largest differences in the Li-Li RDFs
which are over structured. Agreement with KS-DF'T results is better for the C1-CI and
Li-Cl pair correlation functions.

MD simulations of LiCl in the B1 crystal phase were performed at T=300 K using
a cubic supercell of size L=10.16 A. RDFs obtained from a 50 ps trajectory are
reported in Fig. 6. It is evident that KS-DFT MD results are nicely reproduced
by both methods, in particular the PKGRD RDFs can be considered a very good
approximation.

Unlike the gas-phase molecule, inclusion of response densities for LiCl leads to struc-
tural properties of condensed phases in better agreement with KS-DFT MD. The good
performance of the frozen density approach without response densities, first highlighted
in the case of the isolated LiCl molecule, is however confirmed by the results obtained
on the condensed phase systems. This might be due to the fact that in this system
polarization is less relevant than in Lil, being CI~ a smaller and less polarizable anion.
Therefore a suitable choice of the frozen density of C1~ and good local pseudopotentials
may be sufficient to achieve an accurate description of different LiCl phases.

A sensitive test of any computational technique aimed at simulating condensed phase
systems is its ability to predict the relative stability of different crystal structures. The
crystal structure (B1) experimentally found for LiCl is correctly predicted by both
the frozen-density and PKGRD approaches. Moreover the calculated thermodynamic
properties (Table V) are in very good agreement with the corresponding KS-DFT
values; in particular, in the case of cell parameters, the difference can hardly be regarded
as significant. Comparison with experiment can be considered satisfactory as well, even
though the bulk moduli is overestimated by about 25%, as it was in the case of Lil.
Overall, recalling that the same PP, frozen density, and response basis functions for the
Li™ subsystem have been used in all the calculations performed on both Lil and LiCl

systems, the good results obtained by both schemes indicate that subsystem parameters
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are transferable within the alkali halide series.

Due to the very small energy difference between the Bl and the B2 structures (1.3
Kcal/mol) of CsCl, an attempt to reproduce experiment is challenging. Among the
wide family of solid-state theories applied to alkali halides, only few methods have been
able to achieve the correct B2 crystal structure bearing the name of this salt (see, e.g.,
Refs. [63, 65]). A detailed explanation of the reasons determining the thermodynamic
stability of the B2 over the B1 phase in CsCl can be found in the works of Pyper. [65, 66]
Here we take this system simply as a particularly difficult test case, which should fully
highlight limitations of the present model thus establishing its range of applicability.
In general, frozen density schemes and also other more accurate related approaches fail
in predicting the relative stability of the CsCl B1 and B2 phases. [60, 61]

Calculations were performed using the same Cl~ parameters adopted for LiCl and a
simple Cs™ subsystem, with no semicore pseudodensity (Zcs=1). With no core density
on Cs, the model predicts the correct crystal structure. Moreover, the lattice energy
agrees well with experiment (Table VI). On the other hand, larger errors are present in
the cell parameter and the bulk modulus is twice the experimental value. We tried to
improve results by including the frozen density of the outermost core shell of cesium.
Such a choice led to a much better agreement with the experimental bulk modulus and
cell constant; however, now the B2 structure turned out to be less stable than B1, and
the discrepancy of the calculated lattice energy significantly increased. These findings
suggest that the error of the current method is larger than the experimental energy
difference between the B2 and Bl CsCl phases. However, the results indicate that,
even in this particularly difficult case, the agreement with experiment is better than
expected. Furthermore, the combination of our parameterization procedure with the
PKGRD approach ensures transferability of subsystem parameters among chemically

related compounds.

C. Summary and Conclusions

We have presented a novel approach aimed at providing, at low computational cost,

pure density functional description of the physical properties in condensed phase sys-
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tems. Although chemical reactivity, and in general charge transfer processes, are still
outside the range of applicability, our methodology is able to give a satisfactory repre-
sentation of polarization effects, which are treated within a DFT-based linear response
framework. The present technique is an extension of frozen density approaches and
also as an improvement of our recently developed polarizable force field scheme. [14] It
has successfully circumvented one of the major limitations characterizing such models,
namely the use of a pair potential approximation. This has been made possible by
using a frozen density representation for the reference, unperturbed electronic charge
distribution. Borrowing ideas from related models, [39] pseudized frozen densities accu-
rately describing the valence charge distribution of an individual subsystem have been
adopted. This choice, combined with the use of a novel local PP, allowed a significant
gain in computational efficiency without compromising the accuracy of the approach.

The method and the subsystem parameterization protocols have been tested on a
small set of MX compounds. The chosen systems represent the most difficult test cases
among the alkali halide series, and are still capable of severely challenging solid-state
theories more accurate and ambitious than the present approach.

The advantages of the PKGRD approach shown in this study are: i) rigorous, DF'T
based theoretical framework; ii) accuracy comparable to KS-DFT methods; iii) simple
parameterization protocol for obtaining subsystem densities and PP; iv) transferability
of subsystem parameters among different physical phases of chemically related com-
pounds; v) efficient MD implementation. In addition, with no response basis assigned
to the subsystem, a KG-like frozen density description is recovered.

The main disadvantage of the method is that the description of charge-transfer is by
construction beyond the scope of this frozen-density based technique. Such a limitation
could possibly be bypassed by adopting a self-consistent treatment of the full valence
density, such as an orbital-free or a KSCED-like scheme.

Another interesting feature emerging from the analysis of the results is the surpris-
ingly good performance of the frozen pseudodensity scheme without response densities.
Besides confirming the reliability of the parameterization protocol, this finding suggests
the idea of coupling the present computationally efficient technique with KS-DFT in

a mixed “QM-KG” scheme. [68] A frozen-density description is still competitive, in
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terms of simplicity, with a classical MM model. Moreover, as no point charge repre-

sentation is used, the description of intermolecular interactions should be much closer

to corresponding QM interaction, thus facilitating a seamless interface with the QM.
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TABLE I: Parameters of the local atomic pseudopotentials adopted in the present calcula-

tions.

Zn o Ci Cy Cs Cy
v 31 3125 -14.03487  9.55347 -1.76649 0.08437
vy 73 20 69.98773
2.08246 -82.82045
1.90548 24.96683
vimy 74 20 4284.03058 -36.02182
2.08246 -246.12101
1.90548 -1045.29031
2.09194 -2995.86211
voy 7 4228286 11.84544  2.87587
2.17014 3.78443  -9.16080
2.36295 29.19850 -2.53680
2.42582  1.71735  -0.16701
Vi 1 40.39436 11.63239 -14.61657
0.41322 13.22264 18.82146
0.54254 -2.92540 -10.40324
0.37807 -0.96928  -0.88130
Viag 9 4 1.66498 12.31761  -5.53199
2.17014 18.71817  -7.88628
3.85802 22.76144  19.94743
0.85661  .79139  1.43908
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TABLE II: Parameters of subsystem frozen densities adopted in the calculations. {a}: ex-

ponents of the primitive Cartesian Gaussians; {¢}: contraction coefficients.

aLi,pg 4.1
QLi,pg -2.0
aaye 10 0.8 0.6 0.4 02

Qa)e  -15.2433  47.6878  -47.7377 15.2834 -7.9901
ayp e 20923 20586  2.0559  0.3936 0.1563
Gimy,0  1465.1215 -20187.7367 18724.8412 -6.8565 -3.3696

ace 26442 2.6425 24859  0.5704 0.2034
goge  -11405.6830 11529.5248 -123.2871 -6.14723 -2.4074

acs(e) 0 2:2480 2.2483 1.7265  0.9270 0.3520
Gos(9) 0 -20809.5829 20788.3214  29.4320  -8.9045 -7.2660
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TABLE III: Parameters of subsystem basis functions for the density response adopted in
the calculations. {a}: exponents of the primitive Cartesian Gaussians; {b}: contraction

coefficients.

arigp. 0.1 0.5 1.0 20 4.0
bLisp. -0.000368 0.03800 -0.1619 0.5437 -0.941

araysps 10 0.8 06 04 02
biaysp, 0.2118 -0.5534 0.6636 -0.3663 0.05209
arays,, 0-368  1.041
biaysp, 0-02344  0.1175

i) sp, 0-93889  0.30591
bi(rysp, 0.110517 0.014045

acigp, 2.194105 0.120755
bcigp, 0.636226 0.057189
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TABLE IV: Calculated and experimental lattice parameters, lattice energies, B2/B1 energy
differences and bulk moduli in Lil. *From Ref. [69] *From Ref. [70] ‘From Ref. [71].

ap1 (A) E% (au) AE(B2 — B1) (au) B (GPa)

PKGRD(A) 5.65  0.281 0.0143 32.0
KG(A) 572 0.269 0.0124 31.9
PKGRD(B) 5.70  0.278 0.0144 29.3
KG(B) 570 0277 0.0144 30.0
KS-DFT 584  0.299 25.7

Expt. 5.95¢  0.286° 24.0¢
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TABLE V: Calculated and experimental lattice parameters, lattice energies, B2/B1 energy
differences and bulk moduli in LiCl.

“From Ref. [61] *from Ref. [72] “from Ref. [73].

ap1 (A) E'% (au) AE(B2 — B1) (au) B (GPa)

PKGRD 4.98 0.307 0.0225 48.0
KG 4.99 0.300 0.0178 46.7
KS-DFT 4.97 0.338 40.9

Expt.  5.08%  0.322° 35.4¢
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TABLE VI: Calculated and experimental lattice parameters, lattice energies, B2/B1 energy
differences and bulk moduli in CsCl.

“From Ref. [61] ®from Refs. [74, 75].

apz (A) E% (au) AE(B2 — B1) (au) B (GPa)
KG (Zgs=1) 3.91  0.250 -0.0007 39.7

KG (Zcs=9) 4.07 0213 0.0027 24.0
Expt. 4.11¢  0.250° -0.0021° 19.82
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FIG. 1: Potential energy curves for the gas-phase Lil molecule. The reference KS-DFT
curve is represented by open diamonds. Open triangles: KG, with I~ (A) parameter set (see
Table I); Filled triangles: PKGRD, with I (A) parameter set; Filled circles: KG, with I (B)

parameter set; Open squares: PKGRD, with I~ (B) parameter set.

FIG. 2: Radial distribution functions from KG/PKGRD molecular dynamics simulations
for liquid Lil. Reference results from KS-DFT simulations are also shown (thick solid line).
Long-dashed line: KG, with I7(A) parameter set (see Table I); Dotted line: PKGRD, with
I~ (A) parameter set; Dashed line: KG, with I~ (B) parameter set; Dot-dashed line: PKGRD,

with I~ (B) parameter set.

FIG. 3: Radial distribution functions from KG/PKGRD molecular dynamics simulations for
solid Lil. Reference results from KS-DFT simulations are also shown (thick solid line). Long-
dashed line: KG, with I (A) parameter set (see Table I); Dotted line: PKGRD, with I7(A)
parameter set; Dashed line: KG, with I (B) parameter set; Dot-dashed line: PKGRD, with

I~ (B) parameter set.

FIG. 4: Potential energy curves for the gas-phase LiCl molecule. The reference KS-DFT

curve is represented by open diamonds. Filled squares: KG; open circles: PKGRD.

FIG. 5: Radial distribution functions from KG/PKGRD molecular dynamics simulations for
liquid LiCl. Reference results from KS-DFT simulations are also shown (thick solid line).

Long-dashed line: KG; Dotted line: PKGRD.
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FIG. 6: Radial distribution functions from KG/PKGRD molecular dynamics simulations for
solid LiCl. Reference results from KS-DFT simulations are also shown (thick solid line).

Long-dashed line: KG; Dotted line: PKGRD.
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Figure 6
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